Highest weight representations of quantum current algebras
نویسندگان
چکیده
منابع مشابه
Highest-weight Theory for Truncated Current Lie Algebras
Let g be a Lie algebra over a field k of characteristic zero, and a fix positive integer N. The Lie algebra ĝ = g ⊗k k[t]/t N+1 k[t] is called a truncated current Lie algebra. In this paper a highest-weight theory for ĝ is developed when the underlying Lie algebra g possesses a triangular decomposition. The principal result is the reducibility criterion for the Verma modules of ĝ for a wide cla...
متن کاملHighest weight representations of the Virasoro algebra
We consider representations of the Virasoro algebra, a one-dimensional central extension of the Lie algebra of vectorfields on the unit circle. Positive-energy, highest weight and Verma representations are defined and investigated. The Shapovalov form is introduced, and we study Kac formula for its determinant and some consequences for unitarity and degeneracy of irreducible highest weight repr...
متن کاملConformal restriction, highest-weight representations and SLE
We show how to relate Schramm-Loewner Evolutions (SLE) to highestweight representations of infinite-dimensional Lie algebras that are singular at level two, using the conformal restriction properties studied by Lawler, Schramm and Werner in [33]. This confirms the prediction from conformal field theory that two-dimensional critical systems are related to degenerate representations.
متن کاملOn the Unitarization of Highest Weight Representations for Affine Kac-moody Algebras
In a recent paper ([1],[2]) we have classified explicitely all the unitary highest weight representations of non compact real forms of semisimple Lie Algebras on Hermitian symmetric space. These results are necessary in order to construct all the unitary highest weight representations of affine Kac-Moody Algebras following some theorems proved by Jakobsen and Kac ([3],[4]). 1. The Affine Kac-Mo...
متن کاملQuantum Z-algebras and Representations of Quantum Affine Algebras
Generalizing our earlier work, we introduce the homogeneous quantum Z-algebras for all quantum affine algebras Uq(ĝ) of type one. With the new algebras we unite previously scattered realizations of quantum affine algebras in various cases. As a result we find a realization of Uq(F (1) 4 ). 0. Introduction In 1981 Lepowsky and Wilson introduced (principal) Z-algebras as a tool to construct expli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Letters in Mathematical Physics
سال: 1996
ISSN: 0377-9017,1573-0530
DOI: 10.1007/bf00943284